Wednesday, 7 July 2021

How to get only water level contour with OpenCV python on raspberry pi

enter image description hereI am using raspberry pi4 (8GB) with pi camera to detect water level . I have defined a line from 0,375 to 800,375 . If top most point of water level contour goes above this line then I want to call a function. Here is my code and attached image of setup. How do I get water level contour only. Does it require canny edge detection over contours to get clear water level ? first I am getting largest contour and then defining its top most point.

import numpy as np
import cv2
import time 
from datetime import datetime
    
    #color=(255,0,0)
    color=(0,255,0)
    thickness=2
    kernel = np.ones((2,2),np.uint8) # added 01/07/2021
    picflag = 0 # set value to 1 once picture is taken
    
    # function to take still picture when water level goes beyond threshold
    
    def takepicture(frame):
      currentTime = datetime.now()
      picTime = currentTime.strftime("%d.%m.%Y-%H%M%S") # Create file name for our picture
      text = currentTime.strftime("%d.%m.%Y-%H:%M:%S") 
      font = cv2.FONT_HERSHEY_SIMPLEX # font
      org = (05, 20) # org
      fontScale = 0.5 # fontScale
      color = (0, 0, 255) # Red color in BGR
      thickness = 1 # Line thickness of 2 px
      picName = picTime + '.png'
      image = cv2.putText(frame, text, org, font, fontScale, color, thickness, cv2.LINE_AA, False)
      cv2.imwrite(picName , image)
      picflag = 1
      return 
    
    cap = cv2.VideoCapture(0)
    while(True):
        # Capture frame-by-frame
        ret, frame = cap.read()  # ret = 1 if the video is captured; frame is the image
            
        # Our operations on the frame come here    
        gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        #blur = cv2.GaussianBlur(gray,(21,21),0)
        gray= cv2.medianBlur(gray, 3)   #to remove salt and paper noise 
    
        #ret,thresh = cv2.threshold(gray,10,20,cv2.THRESH_BINARY_INV)
        ret,thresh = cv2.threshold(gray,127,127,cv2.THRESH_BINARY_INV) 
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel) # get outer boundaries only added 01/07/2021
        thresh = cv2.dilate(thresh,kernel,iterations = 5) # strengthen weak pixels added 01/07/2021
        img1, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)   
        #img1,contours,hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) #added 01/07/2021
        cv2.line(frame, pt1=(0,375), pt2=(800,375), color=(0,0,255), thickness=2) # added 01/07/2021
        if len(contours) != 0:
                c = max(contours, key = cv2.contourArea) # find the largest contour
                #x,y,w,h = cv2.boundingRect(c)          # get bounding box of largest contour
                img2=cv2.drawContours(frame, c, -1, color, thickness) # draw largest contour
                #img2=cv2.drawContours(frame, contours, -1, color, thickness) # draw all contours
                #img3 = cv2.rectangle(img2,(x,y),(x+w,y+h),(0,0,255),2)  # draw red bounding box in img
                #center = (x, y)
            #print(center) 
                left = tuple(c[c[:, :, 0].argmin()][0])
                right = tuple(c[c[:, :, 0].argmax()][0])
                top = tuple(c[c[:, :, 1].argmin()][0])
                bottom = tuple(c[c[:, :, 1].argmax()][0])
                # Draw dots onto frame
                cv2.drawContours(frame, [c], -1, (36, 255, 12), 2)
                cv2.circle(frame, left, 8, (0, 50, 255), -1)
                cv2.circle(frame, right, 8, (0, 255, 255), -1)
                cv2.circle(frame, top, 8, (255, 50, 0), -1)
                cv2.circle(frame, bottom, 8, (255, 255, 0), -1)
                
                #print('left: {}'.format(left))
                #print('right: {}'.format(right))
                #print(format(top))
                top_countour_point = top[1]
                print(top_countour_point)
                #print('bottom: {}'.format(bottom))
                #if ((top_countour_point <= 375) and (picflag == 0)):   #checking if contour top point is above line
            #takepicture(frame)
                    #continue
                #if ((top_countour_point > 375) and (picflag == 0)) : 
                    #picflag = 0
                    #continue
        # Display the resulting image
        # cv2.line(frame, pt1=(0,375), pt2=(800,375), color=(0,0,255), thickness=2) # added 01/07/2021
        #cv2.imshow('Contour',img3)
        #cv2.imshow('thresh' ,thresh)
        cv2.imshow('Contour',frame)
       
        if cv2.waitKey(1) & 0xFF == ord('q'):  # press q to quit
           break
    
    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()


from How to get only water level contour with OpenCV python on raspberry pi

No comments:

Post a Comment