Tuesday, 16 March 2021

use both CPU and GPU on google colab parallelly, using TensofFlow

I had single file ,say 10Million floating point numbers inside. Using mergesort(custome code below), i would like to sort this file. Here, i am reading 1Million at a time and sorting numbers and writing into a separate file to be merged later.

Custome Mergesort code below using TensorFlow 2.0 API.

import tensorflow as tf
#@tf.function
def split_list(input_list):
    input_list_len = len(input_list)
    midpoint = input_list_len // 2
    return input_list[:midpoint], input_list[midpoint:]

#@tf.function
def merge_sorted_lists(list_left, list_right):

    if tf.math.equal(len(list_left), 0) :
        return list_right
    elif tf.math.equal(len(list_right), 0):
        return list_left
    
 
    index_left = index_right = 0
    list_merged = []  # list to build and return
    list_len_target = len(list_left) + len(list_right)
    while tf.math.less(len(list_merged), list_len_target):
        if tf.math.less_equal(list_left[index_left], list_right[index_right]) :
            # Value on the left list is smaller (or equal so it should be selected)
            list_merged = [*list_merged,list_left[index_left]]
            index_left += 1
        else:
            # Right value bigger
            list_merged = [*list_merged,list_right[index_right]]
            index_right += 1
            

        if tf.math.equal(index_right, len(list_right)):
            list_merged = [*list_merged,*list_left[index_left:]]
            break
        elif tf.math.equal(index_left, len(list_left)):
            list_merged = [*list_merged,*list_right[index_right:]]
            break
    return list_merged

#@tf.function
def merge_sort(input_list):
    if tf.math.less_equal(len(input_list), 1):
        return input_list
    else:
        left, right = split_list(input_list)
        return merge_sorted_lists(merge_sort(left), merge_sort(right))

Below code calls above merge_sort function on the required host/device.

def cpu(input_list):
  lines = []
  with tf.device('/cpu:0'):
    lines = merge_sort(input_list)
    lines1 = []
    lines1 = [str(x)+"\n" for x in lines]
  return lines1

def GPU(input_list):
  lines = []
  with tf.device('/device:GPU:0'):
    lines = merge_sort(input_list)
    lines1 = []
    lines1 = [str(x)+"\n" for x in lines]
  return lines1

The bove CPU or GPU functions are invoked as below, using iterators to read 1Million at a time:

dataset = tf.data.TextLineDataset("numbers.txt") #10 million rows in single file
dataset = dataset.batch(1_000_000)  # divide into 10 batches of 1million each
dataset = dataset.map(lambda x: tf.strings.to_number(tf.strings.strip(x), tf.float32))
iterator = dataset.__iter__()
    
start_time = timeit.default_timer()
lines = cpu(np.stack(list(iterator.get_next())))
print(lines)
print("cpu_time ", timeit.default_timer() - start_time)

start_time = timeit.default_timer()
lines = GPU(np.stack(list(iterator.get_next())))
print(lines)
print("gpu_time ", timeit.default_timer() - start_time)

fid = 1
f_out = open('chunk_{}.txt'.format(fid), 'w')
f_out.writelines(lines)

The above code is run Google Colab GPU instance, first 1Million records are sorted on CPU once and second million on GPU. However i would like to use both CPU and GPU parallely to run mergesort on different sets of million numbers. Ignore merging for now. I would appreciate, sample code lines(if there exists, few lines) or guide(if lot of work involved), to acheive this.



from use both CPU and GPU on google colab parallelly, using TensofFlow

No comments:

Post a Comment