I am working with time series models in tensorflow. My dataset contains physics signals. I need to divide this signals into windows as give this sliced windows as input to my model.
Here is how I am reading the data and slicing it:
import tensorflow as tf
import numpy as np
def _ds_slicer(data):
win_len = 768
return {"mix":(tf.stack(tf.split(data["mix"],win_len))),
"pure":(tf.stack(tf.split(data["pure"],win_len)))}
dataset = tf.data.Dataset.from_tensor_slices({
"mix" : np.random.uniform(0,1,[1000,24576]),
"pure" : np.random.uniform(0,1,[1000,24576])
})
dataset = dataset.map(_ds_slicer)
print dataset.output_shapes
# {'mix': TensorShape([Dimension(768), Dimension(32)]), 'pure': TensorShape([Dimension(768), Dimension(32)])}
I want to reshape this dataset to # {'mix': TensorShape([Dimension(32)]), 'pure': TensorShape([Dimension(32))}
Equivalent transformation in numpy would be something like following:
signal = np.random.uniform(0,1,[1000,24576])
sliced_sig = np.stack(np.split(signal,768,axis=1),axis=1)
print sliced_sig.shape #(1000, 768, 32)
sliced_sig=sliced_sig.reshape(-1, sliced_sig.shape[-1])
print sliced_sig.shape #(768000, 32)
I thought of using tf.contrib.data.group_by_window as an input to dataset.apply() but couldn't figure out exactly how to use it. Is there a way I can use any custom transformation to reshape the dataset?
from How to use tf.data.Dataset.apply() for reshaping the dataset
No comments:
Post a Comment