Sunday, 13 December 2020

Improve performances (vectorize?) pandas.groupby.aggregate

I'm trying to improve the performances of a pandas.groupby.aggregate operation using a custom aggregating function. I noticed that - correct me if I'm wrong - pandas calls the aggregating function on each block in sequence (I suspect it to be a simple for-loop).

Since pandas is heavily based on numpy, is there a way to speed up the calculation using numpy's vectorization features?

My code

In my code I need to aggregate wind data averaging samples together. While averaging wind-speeds is trivial, averaging wind directions requires a more ad-hoc code (e.g. the average of 1deg and 359deg is 0deg, not 180deg).

What my aggregating function does is:

  1. remove NaNs
  2. return NaN if no other value is present
  3. check if a special flag indicating variable wind direction is present. If it is, return the flag
  4. average the wind directions with a vector-averaging algorithm

The function is:

def meandir(x):
    '''
    Parameters
    ----------
    x : pandas.Series
        pandas series to be averaged

    Returns
    -------
    float
        averaged wind direction
    '''

    # Removes the NaN from the recording
    x = x.dropna()

    # If the record is empty, return NaN
    if len(x)==0:
        return np.nan

    # If the record contains variable samples (990) return variable (990)
    elif np.any(x == 990):
        return 990

    # Otherwise sum the vectors and return the angle
    else:
        angle = np.rad2deg(
                           np.arctan2(
                                   np.sum(np.sin(np.deg2rad(x))),
                                   np.sum(np.cos(np.deg2rad(x)))
                                     )
                          )

        #Wrap angles from (-pi,pi) to (0,360)
        return (angle + 360) % 360

you can test it with

from timeit import repeat
import pandas as pd
import numpy as np

N_samples = int(1e4)
N_nan = N_var = int(0.02 * N_samples)

# Generate random data
data = np.random.rand(N_samples,2) * [30, 360]
data[np.random.choice(N_samples, N_nan), 1] = np.nan
data[np.random.choice(N_samples, N_var), 1] = 990

# Create dataset
df = pd.DataFrame(data, columns=['WindSpeed', 'WindDir'])
df.index = pd.date_range(start='2000-01-01 00:00', periods=N_samples, freq='10min')

# Run groupby + aggregate
grouped = df.groupby(pd.Grouper(freq='H'))   # Data from 14.30 to 15.29 are rounded to 15.00
aggfuns1 = {'WindSpeed': np.mean, 'WindDir':meandir}
aggfuns2 = {'WindSpeed': np.mean, 'WindDir':np.mean}

res = repeat(stmt='grouped.agg(aggfuns1)', globals=globals(), number=1, repeat=10)
print(f'With custom aggregating function {min(res)*1000:.2f} ms')

res = repeat(stmt='grouped.agg(aggfuns2)', globals=globals(), number=1, repeat=10)
print(f'Without custom aggregating function {min(res)*1000:.2f} ms')

which on my PC for N_samples=1e4 outputs:

With custom aggregating function 1500.79 ms
Without custom aggregating function 2.08 ms

with the custom aggregating function being 750 times slower and with N_samples=1e6 outputs:

With custom aggregating function 142967.17 ms
Without custom aggregating function 21.92 ms

with the custom aggregating function being 6500 times slower!

Is there a way to speed up this line of code?



from Improve performances (vectorize?) pandas.groupby.aggregate

No comments:

Post a Comment