The following Python source code is the implementation of Marching Square algorithm:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import cv2
from PIL import Image, ImageDraw
class Square():
A = [0, 0]
B = [0, 0]
C = [0, 0]
D = [0, 0]
A_data = 0.0
B_data = 0.0
C_data = 0.0
D_data = 0.0
def GetCaseId(self, threshold):
caseId = 0
if (self.A_data >= threshold):
caseId |= 1
if (self.B_data >= threshold):
caseId |= 2
if (self.C_data >= threshold):
caseId |= 4
if (self.D_data >= threshold):
caseId |= 8
return caseId
def GetLines(self, Threshold):
lines = []
caseId = self.GetCaseId(Threshold)
if caseId in (0, 15):
return []
if caseId in (1, 14, 10):
pX = (self.A[0] + self.B[0]) / 2
pY = self.B[1]
qX = self.D[0]
qY = (self.A[1] + self.D[1]) / 2
line = (pX, pY, qX, qY)
lines.append(line)
if caseId in (2, 13, 5):
pX = (self.A[0] + self.B[0]) / 2
pY = self.A[1]
qX = self.C[0]
qY = (self.A[1] + self.D[1]) / 2
line = (pX, pY, qX, qY)
lines.append(line)
if caseId in (3, 12):
pX = self.A[0]
pY = (self.A[1] + self.D[1]) / 2
qX = self.C[0]
qY = (self.B[1] + self.C[1]) / 2
line = (pX, pY, qX, qY)
lines.append(line)
if caseId in (4, 11, 10):
pX = (self.C[0] + self.D[0]) / 2
pY = self.D[1]
qX = self.B[0]
qY = (self.B[1] + self.C[1]) / 2
line = (pX, pY, qX, qY)
lines.append(line)
elif caseId in (6, 9):
pX = (self.A[0] + self.B[0]) / 2
pY = self.A[1]
qX = (self.C[0] + self.D[0]) / 2
qY = self.C[1]
line = (pX, pY, qX, qY)
lines.append(line)
elif caseId in (7, 8, 5):
pX = (self.C[0] + self.D[0]) / 2
pY = self.C[1]
qX = self.A[0]
qY = (self.A[1] + self.D[1]) / 2
line = (pX, pY, qX, qY)
lines.append(line)
return lines
def marching_square(xVector, yVector, Data, threshold):
linesList = []
Height = len(Data) # rows
Width = len(Data[1]) # cols
if ((Width == len(xVector)) and (Height == len(yVector))):
squares = np.full((Height - 1, Width - 1), Square())
sqHeight = squares.shape[0] # rows count
sqWidth = squares.shape[1] # cols count
for j in range(sqHeight): # rows
for i in range(sqWidth): # cols
a = Data[j + 1, i]
b = Data[j + 1, i + 1]
c = Data[j, i + 1]
d = Data[j, i]
A = [xVector[i], yVector[j + 1]]
B = [xVector[i + 1], yVector[j + 1]]
C = [xVector[i + 1], yVector[j]]
D = [xVector[i], yVector[j]]
squares[j, i].A_data = a
squares[j, i].B_data = b
squares[j, i].C_data = c
squares[j, i].D_data = d
squares[j, i].A = A
squares[j, i].B = B
squares[j, i].C = C
squares[j, i].D = D
list = squares[j, i].GetLines(threshold)
linesList = linesList + list
else:
raise AssertionError
return [linesList]
def main():
x = [i for i in range(256)]
y = [i for i in range(256)]
example_l = [[0 for i in range(256)] for j in range(256)]
for i in range(len(example_l)):
for j in range(len(example_l[0])):
example_l[i][j] = math.sin(i / 10.0)*math.cos(j / 10.0)
example = np.array(example_l)
im = Image.new('RGB', (256, 256), (128, 128, 128))
collection = marching_square(x, y, example, 0.9)
draw = ImageDraw.Draw(im)
for ln in collection:
for toup in ln:
draw.line(toup, fill=(255, 255, 0), width=1)
plt.axis("off")
plt.imshow( im )
plt.show()
if __name__ == '__main__':
main()
Output:
My question is: Why does this source code generate circular patterns?
what is the mathematical explanation of this circular pattern?
from Marching Square algorithm in Python
No comments:
Post a Comment