Thursday, 28 September 2023

How to calculate a Gaussian kernel matrix efficiently in numpy?

def GaussianMatrix(X,sigma):
    row,col=X.shape
    GassMatrix=np.zeros(shape=(row,row))
    X=np.asarray(X)
    i=0
    for v_i in X:
        j=0
        for v_j in X:
            GassMatrix[i,j]=Gaussian(v_i.T,v_j.T,sigma)
            j+=1
        i+=1
    return GassMatrix
def Gaussian(x,z,sigma):
    return np.exp((-(np.linalg.norm(x-z)**2))/(2*sigma**2))

This is my current way. Is there any way I can use matrix operation to do this? X is the data points.



from How to calculate a Gaussian kernel matrix efficiently in numpy?

No comments:

Post a Comment