I have a machine with 24 cores and 2 threads per core. I'm trying to optimize the following code for parallel execution. However, I noticed that the code's performance starts to degrade after a certain number of threads.
import argparse
import glob
import h5py
import numpy as np
import pandas as pd
import xarray as xr
from tqdm import tqdm
import time
import datetime
from multiprocessing import Pool, cpu_count, Lock
import multiprocessing
import cProfile, pstats, io
def process_parcel_file(f, bands, mask):
start_time = time.time()
test = xr.open_dataset(f)
print(f"Elapsed in process_parcel_file for reading dataset: {time.time() - start_time}")
start_time = time.time()
subset = test[bands + ['SCL']].copy()
subset = subset.where(subset != 0, np.nan)
if mask:
subset = subset.where((subset.SCL >= 3) & (subset.SCL < 7))
subset = subset[bands]
# Adding a new dimension week_year and performing grouping
subset['week_year'] = subset.time.dt.strftime('%Y-%U')
subset = subset.groupby('week_year').mean().sortby('week_year')
subset['id'] = test['id'].copy()
# Store the dates and counting pixels for each parcel
dates = subset.week_year.values
n_pixels = test[['id', 'SCL']].groupby('id').count()['SCL'][:, 0].values.reshape(-1, 1)
# Converting to dataframe
grouped_sum = subset.groupby('id').sum()
ids = grouped_sum.id.values
grouped_sum = grouped_sum.to_array().values
grouped_sum = np.swapaxes(grouped_sum, 0, 1)
grouped_sum = grouped_sum.reshape((grouped_sum.shape[0], -1))
colnames = ["{}_{}".format(b, str(x).split('T')[0]) for b in bands for x in dates] + ['count']
values = np.hstack((grouped_sum, n_pixels))
df = pd.DataFrame(values, columns=colnames)
df.insert(0, 'id', ids)
print(f"Elapsed in process_parcel_file til end: {time.time() - start_time}")
return df
def fs_creation(input_dir, out_file, labels_to_keep=None, th=0.1, n=64, days=5, total_days=180, mask=False,
mode='s2', method='patch', bands=['B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B11', 'B12']):
files = glob.glob(input_dir)
times_pool = [] # For storing execution times
times_seq = []
cpu_counts = list(range(2, multiprocessing.cpu_count() + 1, 4)) # The different CPU counts to use
for count in cpu_counts:
print(f"Executing with {count} threads")
if method == 'parcel':
start_pool = time.time()
with Pool(count) as pool:
arguments = [(f, bands, mask) for f in files]
dfs = list(tqdm(pool.starmap(process_parcel_file, arguments), total=len(arguments)))
end_pool = time.time()
start_seq = time.time()
dfs = pd.concat(dfs)
dfs = dfs.groupby('id').sum()
counts = dfs['count'].copy()
dfs = dfs.div(dfs['count'], axis=0)
dfs['count'] = counts
dfs.drop(index=-1).to_csv(out_file)
end_seq = time.time()
times_pool.append(end_pool - start_pool)
times_seq.append(end_seq - start_seq)
pd.DataFrame({'CPU_count': cpu_counts, 'Time pool': times_pool,
'Time seq' : times_seq}).to_csv('cpu_times.csv', index=False)
return 0
When executing the code, it scales well up to around 7-8 threads, but after that, the performance starts to deteriorate. I have profiled the code, and it seems that each thread takes more time to execute the same code.
For example, with 2 threads:
Elapsed in process_parcel_file for reading dataset: 0.012271404266357422
Elapsed in process_parcel_file til end: 1.6681673526763916
Elapsed in process_parcel_file for reading dataset: 0.014229536056518555
Elapsed in process_parcel_file til end: 1.5836331844329834
However, with 22 threads:
Elapsed in process_parcel_file for reading dataset: 0.17968058586120605
Elapsed in process_parcel_file til end: 12.049026727676392
Elapsed in process_parcel_file for reading dataset: 0.052398681640625
Elapsed in process_parcel_file til end: 6.014119625091553
I'm struggling to understand why the performance degrades with more threads. I've already verified that the system has the required number of cores and threads.
I would appreciate any guidance or suggestions to help me identify the cause of this issue and optimize the code for better performance.
It's really hard for me to provide a minimal working example so take that into account.
Thank you in advance.
from Performance degradation with increasing threads in Python multiprocessing
No comments:
Post a Comment