I have the following function which accepts an indicator matrix of shape (20,000 x 20,000). And I have to run the function 20,000 x 20,000 = 400,000,000 times. Note that the indicator_Matrix
has to be in the form of a pandas dataframe when passed as parameter into the function, as my actual problem's dataframe has timeIndex and integer columns but I have simplified this a bit for the sake of understanding the problem.
Pandas Implementation
indicator_Matrix = pd.DataFrame(np.random.randint(0,2,[20000,20000]))
def operations(indicator_Matrix):
s = indicator_Matrix.sum(axis=1)
d = indicator_Matrix.div(s,axis=0)
res = d[d>0].mean(axis=0)
return res.iloc[-1]
I tried to improve it by using numpy
but it is still taking ages to run. I also tried concurrent.future.ThreadPoolExecutor
but it still take a long time to run and not much improvement from list comprehension.
Numpy Implementation
indicator_Matrix = pd.DataFrame(np.random.randint(0,2,[20000,20000]))
def operations(indicator_Matrix):
s = indicator_Matrix.to_numpy().sum(axis=1)
d = (indicator_Matrix.to_numpy().T / s).T
d = pd.DataFrame(d, index = indicator_Matrix.index, columns = indicator_Matrix.columns)
res = d[d>0].mean(axis=0)
return res.iloc[-1]
output = [operations(indicator_Matrix) for i in range(0,20000**2)]
Note that the reason I convert d
to a dataframe again is because I need to obtain the column means and retain only the last column mean using .iloc[-1]
. d[d>0].mean(axis=0)
return column means, i.e.
2478 1.0
0 1.0
Update: I am still stuck in this problem. I wonder if using gpu packages like cudf
and CuPy
on my local desktop would make any difference.
from Python: how to speed up this function and make it more scalable?
No comments:
Post a Comment