Suppose, the following is a dataset for solving a regression problem:
H -9.118 5.488 5.166 4.852 5.164 4.943 8.103 -9.152 7.470 6.452 6.069 6.197 6.434 8.264 9.047 2.222
H 5.488 5.166 4.852 5.164 4.943 8.103 -9.152 -8.536 6.452 6.069 6.197 6.434 8.264 9.047 11.954 2.416
C 5.166 4.852 5.164 4.943 8.103 -9.152 -8.536 5.433 6.069 6.197 6.434 8.264 9.047 11.954 6.703 3.028
C 4.852 5.164 4.943 8.103 -9.152 -8.536 5.433 4.924 6.197 6.434 8.264 9.047 11.954 6.703 6.407 -1.235
C 5.164 4.943 8.103 -9.152 -8.536 5.433 4.924 5.007 6.434 8.264 9.047 11.954 6.703 6.407 6.088 -0.953
H 4.943 8.103 -9.152 -8.536 5.433 4.924 5.007 5.057 8.264 9.047 11.954 6.703 6.407 6.088 6.410 2.233
H 8.103 -9.152 -8.536 5.433 4.924 5.007 5.057 5.026 9.047 11.954 6.703 6.407 6.088 6.410 6.206 2.313
H -9.152 -8.536 5.433 4.924 5.007 5.057 5.026 5.154 11.954 6.703 6.407 6.088 6.410 6.206 6.000 2.314
H -8.536 5.433 4.924 5.007 5.057 5.026 5.154 5.173 6.703 6.407 6.088 6.410 6.206 6.000 6.102 2.244
H 5.433 4.924 5.007 5.057 5.026 5.154 5.173 5.279 6.407 6.088 6.410 6.206 6.000 6.102 6.195 2.109
the left-most column is the class data. The rest of the features are all angular data.
My initial setup for the model was as follows:
def create_model(n_hidden_1, n_hidden_2, num_features):
# create the model
model = Sequential()
model.add(tf.keras.layers.InputLayer(input_shape=(num_features,)))
model.add(tf.keras.layers.Dense(n_hidden_1, activation='relu'))
model.add(tf.keras.layers.Dense(n_hidden_2, activation='relu'))
model.add(tf.keras.layers.Dense(1))
# instantiate the optimizer
opt = keras.optimizers.Adam(learning_rate=LEARNING_RATE)
# compile the model
model.compile(
loss="mean_squared_error",
optimizer=opt,
metrics=["mean_squared_error"]
)
# return model
return model
This model didn't produce the correct outcome.
Someone told me that MSE doesn't work in the case of angular data. So, I need to use a custom output layer and a custom error function.
Why doesn't mean square error work in the case of angular data?
How can I solve this issue?
from Why doesn't mean square error work in case of angular data?
No comments:
Post a Comment