I have a dataframe that holds the Word Mover's Distance between each document in my dataframe. I am running kmediods on this to generate clusters.
1 2 3 4 5
1 0.00 0.05 0.07 0.04 0.05
2 0.05 0.00 0.06 0.04 0.05
3. 0.07 0.06 0.00 0.06 0.06
4 0.04 0.04. 0.06 0.00 0.04
5 0.05 0.05 0.06 0.04 0.00
kmed = KMedoids(n_clusters= 3, random_state=123, method ='pam').fit(distance)
After running on this initial matrix and generating clusters, I want to add new points to be clustered. After adding a new document to the distance matrix I end up with:
1 2 3 4 5 6
1 0.00 0.05 0.07 0.04 0.05 0.12
2 0.05 0.00 0.06 0.04 0.05 0.21
3. 0.07 0.06 0.00 0.06 0.06 0.01
4 0.04 0.04. 0.06 0.00 0.04 0.05
5 0.05 0.05 0.06 0.04 0.00 0.12
6. 0.12 0.21 0.01 0.05 0.12 0.00
I have tried using kmed.predict on the new row.
kmed.predict(new_distance.loc[-1: ])
However, this gives me an error of incompatible dimensions X.shape[1] == 6 while Y.shape[1] == 5.
How can I use this distance of the new document to determine which cluster it should be a part of? Is this even possible, or do I have to recompute clusters every time? Thanks!
from How to assign new observations to cluster using distance matrix and kmedoids?
No comments:
Post a Comment