Can you think of a faster algorithm for this problem? Or improve the code?
Problem:
I have two customer IDs:
- ID1 (e.g. phone number)
- ID2 (e.g. email address)
A user sometimes change their ID1 and sometimes ID2. How can I find unique users?
Example:
ID1 = [7, 7, 8, 9]
ID2 = [a, b, b, c]
Desired result:
ID3 = [Anna, Anna, Anna, Paul]
The real world scenario has ca. 600 000 items per list.
There is already an SQL idea here: How can I match Employee IDs from 2 columns and group them into an array?
And I got help from a friend which had this idea with TypeScript: https://stackblitz.com/edit/typescript-leet-rewkmh?file=index.ts
A second friend of mine helped me with some pseudo-code, and I was able to create this:
Fastest working code so far:
ID1 = [7, 7, 8, 9]
ID2 = ["a", "b", "b", "c"]
def timeit_function(ID1, ID2):
def find_user_addresses():
phone_i = []
email_i = []
tmp1 = [ID1[0]]
tmp2 = []
tmp_index = []
while len(tmp1) != 0 or len(tmp2) != 0:
while len(tmp1) != 0:
tmp_index = []
for index, value in enumerate(ID1):
if value == tmp1[0]:
tmp2.append(ID2[index])
tmp_index.insert(-1, index)
for i in tmp_index:
del ID1[i]
del ID2[i]
tmp1 = list(dict.fromkeys(tmp1))
phone_i.append(tmp1.pop(0))
while len(tmp2) != 0:
tmp_index = []
for index, value in enumerate(ID2):
if value == tmp2[0]:
tmp1.append(ID1[index])
tmp_index.insert(0, index)
for i in tmp_index:
del ID1[i]
del ID2[i]
tmp2 = list(dict.fromkeys(tmp2))
email_i.append(tmp2.pop(0))
return phone_i, email_i
users = {}
i = 0
while len(ID1) != 0:
phone_i, email_i = find_user_addresses()
users[i] = [phone_i, email_i]
i += 1
return users
Output:
{0: [[7, 8], ['a', 'b']], 1: [[9], ['c']]}
Meaning: {User_0: [[phone1, phone2], [email1, email2]], User_1: [phone3, email3]}
%timeit timeit_function(ID1, ID2)
575 ns ± 3.86 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
from Group unique users with two changing IDs
No comments:
Post a Comment