i am trying to load a dataset from csv and perform some federated learning on the available data.
i manage to load a federated dataset from a given csv file and load both the train and the test data.
My question now is how to reproduce a working example to build an iterative process that performs a custom federated averaging on this data.
Here is my code but it's not working:
import collections
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_federated as tff
from absl import app
from tensorflow.keras import layers
from src.main import Parameters
global input_spec
def main(args):
working_dir = "D:/User/Documents/GitHub/TriaBaseMLBackup/input/fakehdfs/nms/ystr=2016/ymstr=1/ymdstr=26"
client_id_colname = 'counter'
SHUFFLE_BUFFER = 1000
NUM_EPOCHS = 1
for root, dirs, files in os.walk(working_dir):
file_list = []
for filename in files:
if filename.endswith('.csv'):
file_list.append(os.path.join(root, filename))
df_list = []
for file in file_list:
df = pd.read_csv(file, delimiter="|", usecols=[1, 2, 6, 7], header=None, na_values=["NIL"],
na_filter=True, names=["time", "meas_info", "counter", "value"])
# df_list.append(df[["value"]])
if df_list:
rawdata = pd.concat(df_list)
client_ids = df.get(client_id_colname)
train_client_ids = client_ids.sample(frac=0.5).tolist()
# test_client_ids = [x for x in client_ids if x not in train_client_ids]
example_dataset = train_data.create_tf_dataset_for_client(
train_data.client_ids[0]
)
def create_tf_dataset_for_client_fn(client_id):
# a function which takes a client_id and returns a
# tf.data.Dataset for that client
# target = df.pop('value')
client_data = df[df['value'] == client_id]
print(df.head())
features = ['time', 'meas_info', 'value']
LABEL_COLUMN = 'counter'
dataset = tf.data.Dataset.from_tensor_slices(
(collections.OrderedDict(df[features].to_dict('list')),
df[LABEL_COLUMN].to_list())
)
global input_spec
input_spec = dataset.element_spec
dataset = dataset.shuffle(SHUFFLE_BUFFER).batch(1).repeat(NUM_EPOCHS)
return dataset
train_data = tff.simulation.ClientData.from_clients_and_fn(
client_ids=train_client_ids,
create_tf_dataset_for_client_fn=create_tf_dataset_for_client_fn
)
# split client id into train and test clients
loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]
def retrieve_model():
initializer = tf.keras.initializers.GlorotNormal(seed=0)
model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(2, input_shape=(1, 2), return_sequences=True),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Activation(tf.nn.softmax),
])
return model
print(input_spec)
def tff_model_fn() -> tff.learning.Model:
return tff.learning.from_keras_model(
keras_model=retrieve_model(),
input_spec=example_dataset.element_spec,
loss=loss_builder(),
metrics=metrics_builder())
iterative_process = tff.learning.build_federated_averaging_process(
tff_model_fn, Parameters.server_adam_optimizer_fn, Parameters.client_adam_optimizer_fn)
server_state = iterative_process.initialize()
for round_num in range(Parameters.FLAGS.total_rounds):
sampled_clients = np.random.choice(
train_data.client_ids,
size=Parameters.FLAGS.train_clients_per_round,
replace=False)
sampled_train_data = [
train_data.create_tf_dataset_for_client(client)
for client in sampled_clients
]
server_state, metrics = iterative_process.next(server_state, sampled_train_data)
train_metrics = metrics['train']
print(metrics)
if __name__ == '__main__':
app.run(main)
def start():
app.run(main)
Here is the input_spec output
(OrderedDict([('time', TensorSpec(shape=(), dtype=tf.int32, name=None)), ('meas_info', TensorSpec(shape=(), dtype=tf.int32, name=None)), ('value', TensorSpec(shape=(), dtype=tf.int64, name=None))]), TensorSpec(shape=(), dtype=tf.float32, name=None))
Here is the error that I got
ValueError: Layer sequential expects 1 inputs, but it received 3 input tensors. Inputs received: [<tf.Tensor 'batch_input:0' shape=() dtype=int32>, <tf.Tensor 'batch_input_1:0' shape=() dtype=int32>, <tf.Tensor 'batch_input_2:0' shape=() dtype=int64>]
Can anyone help me to figure out the problem?
from Build Custom Federated averaging process with ValueError: Layer sequential expects 1 inputs, but it received 3 input tensors
No comments:
Post a Comment