I am desperate to set the Input shape of this simple Keras model :( Both X and Y are numpy.narray but I don't know what's the wrong with it! I tried different X shape but the error is there! The info of the datasets (dimentions, number of samples, etc.) is available in the code. The .pkl file for X_train is got from hidden state of a pre-trained model.
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils
from keras import Input, Model
from keras.layers import Dense
import numpy as np
############################## X_Train ############################
X_Train_3embed1 = pd.read_pickle("XX_Train_3embeding.pkl")
X_Train_3embed = np.array(X_Train_3embed1)
print("X-Train")
print(X_Train_3embed.shape) # (230, 1, 128)
print(type(X_Train_3embed)) # <class 'numpy.ndarray'>
print(X_Train_3embed[0].shape) # (1, 128)
print(type(X_Train_3embed[0])) # <class 'numpy.ndarray'>
############################## Y_Train ############################
Y_Train_labels_list = pd.read_pickle("lis_Y_all_Train.pkl")
print(type(Y_Train_labels_list)) #<class 'numpy.ndarray'>
print(type(Y_Train_labels_list[0])) #<class 'str'>
encoder = LabelEncoder()
encoder.fit(Y_Train_labels_list)
encoded_Y = encoder.transform(Y_Train_labels_list)
Y_my_Train = np_utils.to_categorical(encoded_Y)
print("Y-Train")
print(Y_my_Train.shape) #(230, 83)
print(type(Y_my_Train)) # <class 'numpy.ndarray'>
print(Y_my_Train[0].shape) # (83,)
print(type(Y_my_Train[0])) # <class 'numpy.ndarray'>
################################## Model ##################################
first_input = Input(shape=(1, 128))
first_dense = Dense(128)(first_input)
output_layer = Dense(83, activation='softmax')(first_dense)
model = Model(inputs=first_input, outputs=output_layer)
model.summary()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
history = model.fit((X_Train_3embed, Y_my_Train), epochs=2, batch_size=32)
Here is the result:
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 1, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 1, 128) 16512
_________________________________________________________________
dense_2 (Dense) (None, 1, 83) 10707
=================================================================
Total params: 27,219
Trainable params: 27,219
Non-trainable params: 0
_________________________________________________________________
Traceback (most recent call last):
File "/home/vahideh/PycharmProjects/3KArgen-master/MyTransferClassifier2.py", line 63, in <module>
history = model.fit((X_Train_3embed, Y_my_Train), epochs=2, batch_size=32)
File "/home/vahideh/PycharmProjects/MyVirtualEnvs/MyKargo/lib/python3.6/site-packages/keras/engine/training.py", line 1154, in fit
batch_size=batch_size)
File "/home/vahideh/PycharmProjects/MyVirtualEnvs/MyKargo/lib/python3.6/site-packages/keras/engine/training.py", line 579, in _standardize_user_data
exception_prefix='input')
File "/home/vahideh/PycharmProjects/MyVirtualEnvs/MyKargo/lib/python3.6/site-packages/keras/engine/training_utils.py", line 99, in standardize_input_data
data = [standardize_single_array(x) for x in data]
File "/home/vahideh/PycharmProjects/MyVirtualEnvs/MyKargo/lib/python3.6/site-packages/keras/engine/training_utils.py", line 99, in <listcomp>
data = [standardize_single_array(x) for x in data]
File "/home/vahideh/PycharmProjects/MyVirtualEnvs/MyKargo/lib/python3.6/site-packages/keras/engine/training_utils.py", line 34, in standardize_single_array
elif x.ndim == 1:
AttributeError: 'tuple' object has no attribute 'ndim'
How can I feed these dataset to the model? or change the input shape of the model?
from Error in shape (dimention) and type of Keras model input
No comments:
Post a Comment