Friday, 1 January 2021

How to Deal with Lat/Lon Arrays with Multiple Dimensions?

I'm working with Pygrib trying to get surface temperatures for particular lat/lon coordinates using the NBM grib data (available here if it helps).

I've been stuck trying to get an index value to use with representative data for a particular latitude and longitude. I was able to derive an index, but the problem is the latitude and longitude appear to have 2 coordinates each. I'll use Miami, FL (25.7617° N, 80.1918° W) as an example to illustrate this. Formatted to be minimum reproducible IF a grib file is provided.

def get_grib_data(self, gribfile, shortName):
    grbs = pygrib.open(gribfile)
    # Temp needs level specified
    if shortName == '2t':
        grib_param = grbs.select(shortName=shortName, level=2)
    # Convention- use short name for less than 5 chars
    # Else, use name
    elif len(shortName) < 5:
        grib_param = grbs.select(shortName=shortName)
    else:
        grib_param = grbs.select(name=shortName)
        data_values = grib_param[0].values
    # Need varying returns depending on parameter
    grbs.close()
    if shortName == '2t':
        return data_values, grib_param
    else:
        return data_values

# This function is used to find the closest lat/lon value to the entered one
def closest(self, coordinate, value): 
    ab_array = np.abs(coordinate - value)
    smallest_difference_index = np.amin(ab_array)
    ind = np.unravel_index(np.argmin(ab_array, axis=None), ab_array.shape)
    return ind

def get_local_value(data, j, in_lats, in_lons, lats, lons):
    lat_ind = closest(lats, in_lats[j])
    lon_ind = closest(lons, in_lons[j])

    print(lat_ind[0])
    print(lat_ind[1])
    print(lon_ind[0])
    print(lon_ind[1])
       
    if len(lat_ind) > 1 or len(lon_ind) > 1:
        lat_ind = lat_ind[0]
        lon_ind = lon_ind[0]
        dtype = data[lat_ind][lon_ind]
    else:
        dtype = data[lat_ind][lon_ind]

    return dtype 

if __name__ == '__main__':
    tfile = # Path to grib file
    temps, param = grib_data.get_grib_data(tfile, '2t')
    lats, lons = param[0].latlons()
    j = 0
    in_lats = [25.7617, 0 , 0]
    in_lons = [-80.198, 0, 0]
    temp = grib_data.get_local_value(temps, j, in_lats, in_lons, lats, lons)

When I do the print listed, I get the following for indices:

lat_ind[0]: 182
lat_ind[1]: 1931
lon_ind[0]: 1226
lon_ind[1]: 1756

So if my lat/lon were 1 dimensional, I would just do temp = data[lat[0]][lon[0]], but in this case that would give non-representative data. How would I go about handling the fact that lat/lon are in 2 coordinates? I have verified that lats[lat_ind[0][lat_ind1] gives the input latitude and the same for longitude.



from How to Deal with Lat/Lon Arrays with Multiple Dimensions?

No comments:

Post a Comment