Sunday, 29 November 2020

Python NEAT not learning further after a certain point

It seems that my program is trying to learn until a certain point, and then it's satisfied and stops improving and changing at all. With my testing it usually goes to a value of -5 at most, and then it remains there no matter how long I keep it running. The result set does not change either.

Just to keep track of it I made my own kind of logging thing to see which did best. The array of ones and zeroes is referring to how often the AI made a right choice (1), and how often the AI made a wrong choice (0).

My goal is to get the AI to repeat a pattern of going above 0.5 and then going below 0.5, not necessarily find the odd number. This was meant as just a little test to see if I could get an AI working properly with some basic data, before doing something a bit more advanced.

But unfortunately it's not working and I am not certain why.

The code:

import os
import neat

def main(genomes, config):
    networks = []
    ge = []
    choices = []

    for _, genome in genomes:
        network = neat.nn.FeedForwardNetwork.create(genome, config)
        networks.append(network)

        genome.fitness = 0
        ge.append(genome)

        choices.append([])

    for x in range(25):
        for i, genome in enumerate(ge):
            output = networks[i].activate([x])

            # print(str(x) + " - " + str(i) + " chose " + str(output[0]))
            if output[0] > 0.5:
                if x % 2 == 0:
                    ge[i].fitness += 1
                    choices[i].append(1)
                else:
                    ge[i].fitness -= 5
                    choices[i].append(0)
            else:
                if not x % 2 == 0:
                    ge[i].fitness += 1
                    choices[i].append(1)
                else:
                    ge[i].fitness -= 5
                    choices[i].append(0)
                    pass
            
            # Optional death function, if I use this there are no winners at any point.
            # if ge[i].fitness <= 20:
            #     ge[i].fitness -= 100
            #     ge.pop(i)
            #     choices.pop(i)
            #    networks.pop(i)
    if len(ge) > 0:
        fittest = -1
        fitness = -999999
        for i, genome in enumerate(ge):
            if ge[i].fitness > fitness:
                fittest = i
                fitness = ge[i].fitness

        print("Best: " + str(fittest) + " with fitness " + str(fitness))
        print(str(choices[fittest]))
    else:
        print("Done with no best.")

def run(config_path):
    config = neat.config.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet,
                                neat.DefaultStagnation, config_path)

    pop = neat.Population(config)

    #pop.add_reporter(neat.StdOutReporter(True))
    #stats = neat.StatisticsReporter()
    #pop.add_reporter(stats)

    winner = pop.run(main, 100)

if __name__ == "__main__":
    local_dir = os.path.dirname(__file__)
    config_path = os.path.join(local_dir, "config-feedforward.txt")
    run(config_path)

The NEAT config:

[NEAT]
fitness_criterion     = max
fitness_threshold     = 100000
pop_size              = 5000
reset_on_extinction   = False

[DefaultGenome]
# node activation options
activation_default      = tanh
activation_mutate_rate  = 0.0
activation_options      = tanh

# node aggregation options
aggregation_default     = sum
aggregation_mutate_rate = 0.0
aggregation_options     = sum

# node bias options
bias_init_mean          = 0.0
bias_init_stdev         = 1.0
bias_max_value          = 30.0
bias_min_value          = -30.0
bias_mutate_power       = 0.5
bias_mutate_rate        = 0.7
bias_replace_rate       = 0.1

# genome compatibility options
compatibility_disjoint_coefficient = 1.0
compatibility_weight_coefficient   = 0.5

# connection add/remove rates
conn_add_prob           = 0.5
conn_delete_prob        = 0.5

# connection enable options
enabled_default         = True
enabled_mutate_rate     = 0.1

feed_forward            = True
initial_connection      = full

# node add/remove rates
node_add_prob           = 0.2
node_delete_prob        = 0.2

# network parameters
num_hidden              = 0
num_inputs              = 1
num_outputs             = 1

# node response options
response_init_mean      = 1.0
response_init_stdev     = 0.0
response_max_value      = 30.0
response_min_value      = -30.0
response_mutate_power   = 0.0
response_mutate_rate    = 0.0
response_replace_rate   = 0.0

# connection weight options
weight_init_mean        = 0.0
weight_init_stdev       = 1.0
weight_max_value        = 30
weight_min_value        = -30
weight_mutate_power     = 0.5
weight_mutate_rate      = 0.8
weight_replace_rate     = 0.1

[DefaultSpeciesSet]
compatibility_threshold = 3.0

[DefaultStagnation]
species_fitness_func = max
max_stagnation       = 20
species_elitism      = 2

[DefaultReproduction]
elitism            = 2
survival_threshold = 0.2


from Python NEAT not learning further after a certain point

No comments:

Post a Comment