Wednesday, 30 October 2019

GradienTape convergence much slower than Keras.model.fit

I am currently trying to get a hold of the TF2.0 api, but as I compared the GradientTape to a regular keras.Model.fit I noticed:

  1. It ran slower(probably due to the Eager Execution)

  2. It converged much slower (and I am not sure why).

+--------+--------------+------------------+
|  Epoch | GradientTape | keras.Model.fit  |
+--------+--------------+------------------+
|    1   |     0.905    |      0.8793      |
+--------+--------------+------------------+
|    2   |     0.352    |      0.2226      |
+--------+--------------+------------------+
|    3   |     0.285    |      0.1192      |
+--------+--------------+------------------+
|    4   |     0.282    |      0.1029      |
+--------+--------------+------------------+
|    5   |     0.275    |      0.0940      |
+--------+--------------+------------------+

Here is the training loop I used with the GradientTape:


optimizer = keras.optimizers.Adam()
glove_model = GloveModel(vocab_size=len(labels))
train_loss = keras.metrics.Mean(name='train_loss')

@tf.function
def train_step(examples, labels):
    with tf.GradientTape() as tape:
        predictions = glove_model(examples)
        loss = glove_model.glove_loss(labels, predictions)

    gradients = tape.gradient(loss, glove_model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, glove_model.trainable_variables))

    train_loss(loss)



total_step = 0
for epoch in range(epochs_number):

    pbar = tqdm(train_ds.enumerate(), total=int(len(index_data) / batch_size) + 1)

    for ix, (examples, labels) in pbar:

        train_step(examples, labels)


    print(f"Epoch {epoch + 1}, Loss {train_loss.result()}")

    # Reset the metrics for the next epoch
    train_loss.reset_states()

And here is the Keras.Model.fit training:

glove_model.compile(optimizer, glove_model.glove_loss)
glove_model.fit(train_ds, epochs=epochs_number)

And Here is the model.

class GloveModel(keras.Model):

    def __init__(self, vocab_size, dim=100, a=3/4, x_max=100):
        super(GloveModel, self).__init__()

        self.vocab_size = vocab_size
        self.dim = dim
        self.a = a
        self.x_max = x_max

        self.target_embedding = layers.Embedding(
            input_dim=self.vocab_size, output_dim=self.dim, input_length=1, name="target_embedding"
        )
        self.target_bias = layers.Embedding(
            input_dim=self.vocab_size, output_dim=1, input_length=1, name="target_bias"
        )

        self.context_embedding = layers.Embedding(
            input_dim=self.vocab_size, output_dim=self.dim, input_length=1, name="context_embedding"
        )
        self.context_bias = layers.Embedding(
            input_dim=self.vocab_size, output_dim=1, input_length=1, name="context_bias"
        )

        self.dot_product = layers.Dot(axes=-1, name="dot")

        self.prediction = layers.Add(name="add")
        self.step = 0

    def call(self, inputs):

        target_ix = inputs[:, 0]
        context_ix = inputs[:, 1]

        target_embedding = self.target_embedding(target_ix)
        target_bias = self.target_bias(target_ix)

        context_embedding = self.context_embedding(context_ix)
        context_bias = self.context_bias(context_ix)

        dot_product = self.dot_product([target_embedding, context_embedding])
        prediction = self.prediction([dot_product, target_bias, context_bias])

        return prediction

    def glove_loss(self, y_true, y_pred):

        weight = tf.math.minimum(
            tf.math.pow(y_true/self.x_max, self.a), 1.0
        )
        loss_value = tf.math.reduce_mean(weight * tf.math.pow(y_pred - tf.math.log(y_true), 2.0))

        return loss_value



I tried multiple configurations and optimizers but nothing seems to change the convergence rate.



from GradienTape convergence much slower than Keras.model.fit

No comments:

Post a Comment