Wednesday, 31 July 2019

Tensorflow & Keras can't load .ckpt save

So I am using the ModelCheckpoint callback to save the best epoch of a model I am training. It saves with no errors, but when I try to load it, I get the error:

2019-07-27 22:58:04.713951: W tensorflow/core/util/tensor_slice_reader.cc:95] Could not open C:\Users\Riley\PycharmProjects\myNN\cp.ckpt: Data loss: not an sstable (bad magic number): perhaps your file is in a different file format and you need to use a different restore operator?

I have tried using the absolute/full path, but no luck. I'm sure I could use EarlyStopping, but I'd still like to understand why I am getting the error. Here is my code:

from __future__ import absolute_import, division, print_function

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import datetime
import statistics

(train_images, train_labels), (test_images, test_labels) = np.load("dataset.npy", allow_pickle=True)

train_images = train_images / 255
test_images = test_images / 255

train_labels = list(map(float, train_labels))
test_labels = list(map(float, test_labels))
train_labels = [i/10 for i in train_labels]
test_labels = [i/10 for i in test_labels]

'''
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(128, 128)),
    keras.layers.Dense(64, activation=tf.nn.relu),
    keras.layers.Dense(1)
  ])

'''

start_time = datetime.datetime.now()

model = keras.Sequential([
    keras.layers.Conv2D(32, kernel_size=(5, 5), strides=(1, 1), activation='relu', input_shape=(128, 128, 1)),
    keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
    keras.layers.Dropout(0.2),
    keras.layers.Conv2D(64, (5, 5), activation='relu'),
    keras.layers.MaxPooling2D(pool_size=(2, 2)),
    keras.layers.Dropout(0.2),
    keras.layers.Flatten(),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(1000, activation='relu'),
    keras.layers.Dense(1)

])

model.compile(loss='mean_absolute_error',
    optimizer=keras.optimizers.SGD(lr=0.01),
    metrics=['mean_absolute_error', 'mean_squared_error'])

train_images = train_images.reshape(328, 128, 128, 1)
test_images = test_images.reshape(82, 128, 128, 1)

model.fit(train_images, train_labels, epochs=100, callbacks=[keras.callbacks.ModelCheckpoint("cp.ckpt", monitor='mean_absolute_error', save_best_only=True, verbose=1)])

model.load_weights("cp.ckpt")

predictions = model.predict(test_images)

totalDifference = 0
for i in range(82):
    print("%s: %s" % (test_labels[i] * 10, predictions[i] * 10))
    totalDifference += abs(test_labels[i] - predictions[i])

avgDifference = totalDifference / 8.2

print("\n%s\n" % avgDifference)
print("Time Elapsed:")
print(datetime.datetime.now() - start_time)



from Tensorflow & Keras can't load .ckpt save

No comments:

Post a Comment