To get to grips with PyTorch (and deep learning in general) I started by working through some basic classification examples. One such example was classifying a non-linear dataset created using sklearn (full code available as notebook here)
n_pts = 500
X, y = datasets.make_circles(n_samples=n_pts, random_state=123, noise=0.1, factor=0.2)
x_data = torch.FloatTensor(X)
y_data = torch.FloatTensor(y.reshape(500, 1))
This is then accurately classified using a pretty basic neural net
class Model(nn.Module):
def __init__(self, input_size, H1, output_size):
super().__init__()
self.linear = nn.Linear(input_size, H1)
self.linear2 = nn.Linear(H1, output_size)
def forward(self, x):
x = torch.sigmoid(self.linear(x))
x = torch.sigmoid(self.linear2(x))
return x
def predict(self, x):
pred = self.forward(x)
if pred >= 0.5:
return 1
else:
return 0
As I have an interest in health data I then decided to try and use the same network structure to classify some a basic real-world dataset. I took heart rate data for one patient from here, and altered it so all values > 91 would be labelled as anomalies (e.g. a 1
and everything <= 91 labelled a 0
). This is completely arbitrary, but I just wanted to see how the classification would work. The complete notebook for this example is here.
What is not intuitive to me is why the first example reaches a loss of 0.0016 after 1,000 epochs, whereas the second example only reaches a loss of 0.4296 after 10,000 epochs
Perhaps I am being naive in thinking that the heart rate example would be much easier to classify. Any insights to help me understand why this is not what I am seeing would be great!
from PyTorch Binary Classification - same network structure, 'simpler' data, but worse performance?
No comments:
Post a Comment