Given the simple OR gate problem:
or_input = np.array([[0,0], [0,1], [1,0], [1,1]])
or_output = np.array([[0,1,1,1]]).T
If we train a simple single-layered perceptron (without backpropagation), we could do something like this:
import numpy as np
np.random.seed(0)
def sigmoid(x): # Returns values that sums to one.
return 1 / (1 + np.exp(-x))
def cost(predicted, truth):
return (truth - predicted)**2
or_input = np.array([[0,0], [0,1], [1,0], [1,1]])
or_output = np.array([[0,1,1,1]]).T
# Define the shape of the weight vector.
num_data, input_dim = or_input.shape
# Define the shape of the output vector.
output_dim = len(or_output.T)
num_epochs = 50 # No. of times to iterate.
learning_rate = 0.03 # How large a step to take per iteration.
# Lets standardize and call our inputs X and outputs Y
X = or_input
Y = or_output
W = np.random.random((input_dim, output_dim))
for _ in range(num_epochs):
layer0 = X
# Forward propagation.
# Inside the perceptron, Step 2.
layer1 = sigmoid(np.dot(X, W))
# How much did we miss in the predictions?
cost_error = cost(layer1, Y)
# update weights
W += - learning_rate * np.dot(layer0.T, cost_error)
# Expected output.
print(Y.tolist())
# On the training data
print([[int(prediction > 0.5)] for prediction in layer1])
[out]:
[[0], [1], [1], [1]]
[[0], [1], [1], [1]]
With backpropagation, to compute the d(cost)/d(X)
, are the follow steps correct?
-
compute the layer1 error by multiplying the cost error and the derivatives of the cost
-
then compute the layer1 delta by multiplying the layer 1 error and the derivatives of the sigmoid
-
then do a dot product between the inputs and the layer1 delta to get the differential of the i.e.
d(cost)/d(X)
Then the d(cost)/d(X)
is multiplied with the negative of the learning rate to perform gradient descent.
num_epochs = 0 # No. of times to iterate.
learning_rate = 0.03 # How large a step to take per iteration.
# Lets standardize and call our inputs X and outputs Y
X = or_input
Y = or_output
W = np.random.random((input_dim, output_dim))
for _ in range(num_epochs):
layer0 = X
# Forward propagation.
# Inside the perceptron, Step 2.
layer1 = sigmoid(np.dot(X, W))
# How much did we miss in the predictions?
cost_error = cost(layer1, Y)
# Back propagation.
# multiply how much we missed from the gradient/slope of the cost for our prediction.
layer1_error = cost_error * cost_derivative(cost_error)
# multiply how much we missed by the gradient/slope of the sigmoid at the values in layer1
layer1_delta = layer1_error * sigmoid_derivative(layer1)
# update weights
W += - learning_rate * np.dot(layer0.T, layer1_delta)
In that case, should the implementation look like this below with the cost_derivative
and sigmoid_derivative
?
import numpy as np
np.random.seed(0)
def sigmoid(x): # Returns values that sums to one.
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(sx):
# See https://math.stackexchange.com/a/1225116
return sx * (1 - sx)
def cost(predicted, truth):
return (truth - predicted)**2
def cost_derivative(y):
# If the cost is:
# cost = y - y_hat
# What's the derivative of d(cost)/d(y)
# d(cost)/d(y) = 1
return 2*y
or_input = np.array([[0,0], [0,1], [1,0], [1,1]])
or_output = np.array([[0,1,1,1]]).T
# Define the shape of the weight vector.
num_data, input_dim = or_input.shape
# Define the shape of the output vector.
output_dim = len(or_output.T)
num_epochs = 5 # No. of times to iterate.
learning_rate = 0.03 # How large a step to take per iteration.
# Lets standardize and call our inputs X and outputs Y
X = or_input
Y = or_output
W = np.random.random((input_dim, output_dim))
for _ in range(num_epochs):
layer0 = X
# Forward propagation.
# Inside the perceptron, Step 2.
layer1 = sigmoid(np.dot(X, W))
# How much did we miss in the predictions?
cost_error = cost(layer1, Y)
# Back propagation.
# multiply how much we missed from the gradient/slope of the cost for our prediction.
layer1_error = cost_error * cost_derivative(cost_error)
# multiply how much we missed by the gradient/slope of the sigmoid at the values in layer1
layer1_delta = layer1_error * sigmoid_derivative(layer1)
# update weights
W += - learning_rate * np.dot(layer0.T, layer1_delta)
# Expected output.
print(Y.tolist())
# On the training data
print([[int(prediction > 0.5)] for prediction in layer1])
[out]:
[[0], [1], [1], [1]]
[[0], [1], [1], [1]]
BTW, given the random input seeds, even without the W
and gradient descent or perceptron, the prediction can be still right:
import numpy as np
np.random.seed(0)
# Lets standardize and call our inputs X and outputs Y
X = or_input
Y = or_output
W = np.random.random((input_dim, output_dim))
# On the training data
predictions = sigmoid(np.dot(X, W))
[[int(prediction > 0.5)] for prediction in predictions]
from Correct backpropagation in simple perceptron
No comments:
Post a Comment