Tuesday, 19 February 2019

Writing training model for CNN

I am writing the training code for TwoStream-IQA which is a two-stream convolutional neural network. This model predicts the quality score for the patches being assessed through two streams of the network. In the training below, I have used test dataset provided in the GitHub link above.

The training code is as below:

## prepare training data 
test_label_path = 'data_list/test.txt'
test_img_path = 'data/live/'
test_Graimg_path = 'data/live_grad/'
save_model_path = '/models/nr_sana_2stream.model'

patches_per_img = 256
patchSize = 32

print('-------------Load data-------------')
final_train_set = []
with open(test_label_path, 'rt') as f:
    for l in f:
        line, la = l.strip().split()  # for debug

        tic = time.time()
        full_path = os.path.join(test_img_path, line)
        Grafull_path = os.path.join(test_Graimg_path, line)

        inputImage = Image.open(full_path)
        Graf = Image.open(Grafull_path)
        img = np.asarray(inputImage, dtype=np.float32)
        Gra = np.asarray(Graf, dtype=np.float32)
        img = img.transpose(2, 0, 1)
        Gra = Gra.transpose(2, 0, 1)

        img1 = np.zeros((1, 3, Gra.shape[1], Gra.shape[2]))
        img1[0, :, :, :] = img
        Gra1 = np.zeros((1, 3, Gra.shape[1], Gra.shape[2]))
        Gra1[0, :, :, :] = Gra

        patches = extract_patches(img, (3, patchSize, patchSize), patchSize)
        Grapatches = extract_patches(Gra, (3, patchSize, patchSize), patchSize)

        X = patches.reshape((-1, 3, patchSize, patchSize))
        GraX = Grapatches.reshape((-1, 3, patchSize, patchSize))

        temp_slice1 = [X[int(float(index))] for index in range(256)]
        temp_slice2 = [GraX[int(float(index))] for index in range(256)]
        ##############################################  
        for j in range(len(temp_slice1)):
            temp_slice1[j] = xp.array(temp_slice1[j].astype(np.float32))
            temp_slice2[j] = xp.array(temp_slice2[j].astype(np.float32))

            final_train_set.append((
                np.asarray((temp_slice1[j], temp_slice2[j])).astype(np.float32),
                int(la)
                ))      
        ##############################################  
print('--------------Done!----------------')

print('--------------Iterator!----------------')    
train_iter = iterators.SerialIterator(final_train_set, batch_size=4)
optimizer = optimizers.Adam()
optimizer.use_cleargrads()
optimizer.setup(model)

updater = training.StandardUpdater(train_iter, optimizer, device=0)

print('--------------Trainer!----------------') 
trainer = training.Trainer(updater, (50, 'epoch'), out='result')

trainer.extend(extensions.LogReport())

trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'main/loss', 'elapsed_time']))

print('--------------Running trainer!----------------') 
trainer.run()

But the code is producing error on line trainer.run() as:

-------------Load data-------------
--------------Done!----------------
--------------Iterator!----------------
--------------Trainer!----------------
--------------Running trainer!----------------
Exception in main training loop: Unsupported dtype object
Traceback (most recent call last):
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/trainer.py", line 316, in run
    update()
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 149, in update
    self.update_core()
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 154, in update_core
    in_arrays = self.converter(batch, self.device)
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 149, in concat_examples
    return to_device(device, _concat_arrays(batch, padding))
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 37, in to_device
    return cuda.to_gpu(x, device)
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 285, in to_gpu
    return _array_to_gpu(array, device_, stream)
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 333, in _array_to_gpu
    return cupy.asarray(array)
  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/cupy/creation/from_data.py", line 60, in asarray
    return core.array(a, dtype, False)
  File "cupy/core/core.pyx", line 2049, in cupy.core.core.array
  File "cupy/core/core.pyx", line 2083, in cupy.core.core.array
Will finalize trainer extensions and updater before reraising the exception.
Traceback (most recent call last):

  File "<ipython-input-69-12b84b41c6b9>", line 1, in <module>
    runfile('/mnt/nas/sanaalamgeer/Projects/1/MyOwnChainer/Two-stream_IQA-master/train.py', wdir='/mnt/nas/sanaalamgeer/Projects/1/MyOwnChainer/Two-stream_IQA-master')

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/spyder_kernels/customize/spydercustomize.py", line 668, in runfile
    execfile(filename, namespace)

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/spyder_kernels/customize/spydercustomize.py", line 108, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)

  File "/mnt/nas/sanaalamgeer/Projects/1/MyOwnChainer/Two-stream_IQA-master/train.py", line 129, in <module>
    trainer.run()

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/trainer.py", line 330, in run
    six.reraise(*sys.exc_info())

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/six.py", line 693, in reraise
    raise value

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/trainer.py", line 316, in run
    update()

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 149, in update
    self.update_core()

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 154, in update_core
    in_arrays = self.converter(batch, self.device)

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 149, in concat_examples
    return to_device(device, _concat_arrays(batch, padding))

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 37, in to_device
    return cuda.to_gpu(x, device)

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 285, in to_gpu
    return _array_to_gpu(array, device_, stream)

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 333, in _array_to_gpu
    return cupy.asarray(array)

  File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/cupy/creation/from_data.py", line 60, in asarray
    return core.array(a, dtype, False)

  File "cupy/core/core.pyx", line 2049, in cupy.core.core.array

  File "cupy/core/core.pyx", line 2083, in cupy.core.core.array

ValueError: Unsupported dtype object

Maybe thats's because I am arraging training data wrong because the model takes training parameters as:

length = x_data.shape[0]
x1 = Variable(x_data[0:length:2])
x2 = Variable(x_data[1:length:2])

and y_data as:

t = xp.repeat(y_data[0:length:2], 1)

The variable final_train_set prepapres dataset of a tuple (Numpy Array, 66) where every Numpy Array has dimensions (2, 3, 32, 32) which carries two types patches (3, 32, 32).

I have used dataset from the github link provided above. I am a newbie in Chainer,Please help!!



from Writing training model for CNN

No comments:

Post a Comment