Saturday, 24 November 2018

Saving and restoring functions in TensorFlow

I am working on a VAE project in TensorFlow where the encoder/decoder networks are build in functions. The idea is to be able to save, then load the trained model and do sampling, using the encoder function.

After restoring the model, I am having trouble getting the decoder function to run and give me back the restored, trained variables, getting an "Uninitialized value" error. I assume it is because the function is either creating a new new one, overwriting the existing, or otherwise. But I cannot figure out how to solve this. Here is some code:

class VAE(object):    
    def __init__(self, restore=True):
        self.session = tf.Session()
        if restore:
            self.restore_model()
            self.build_decoder = tf.make_template('decoder', self._build_decoder)

@staticmethod
def _build_decoder(z, output_size=768, hidden_size=200,
                  hidden_activation=tf.nn.elu, output_activation=tf.nn.sigmoid):
    x = tf.layers.dense(z, hidden_size, activation=hidden_activation)
    x = tf.layers.dense(x, hidden_size, activation=hidden_activation)
    logits = tf.layers.dense(x, output_size, activation=output_activation)
    return distributions.Independent(distributions.Bernoulli(logits), 2)

def sample_decoder(self, n_samples):
    prior = self.build_prior(self.latent_dim)
    samples = self.build_decoder(prior.sample(n_samples), self.input_size).mean()
    return self.session.run([samples])

def restore_model(self):
    print("Restoring")
    self.saver = tf.train.import_meta_graph(os.path.join(self.save_dir, "turbolearn.meta"))
    self.saver.restore(self.sess, tf.train.latest_checkpoint(self.save_dir))
    self._restored = True

want to run samples = vae.sample_decoder(5)

In my training routine, I run:

        if self.checkpoint:
            self.saver.save(self.session, os.path.join(self.save_dir, "myvae"), write_meta_graph=True)



from Saving and restoring functions in TensorFlow

No comments:

Post a Comment