I thought mask_zero=True will output 0's when the input value is 0, so the following layers could skip computation or something.
How does mask_zero works?
Example:
data_in = np.array([
[1, 2, 0, 0]
])
data_in.shape
>>> (1, 4)
# model
x = Input(shape=(4,))
e = Embedding(5, 5, mask_zero=True)(x)
m = Model(inputs=x, outputs=e)
p = m.predict(data_in)
print(p.shape)
print(p)
The actual output is: (the numbers are random)
(1, 4, 5)
[[[ 0.02499047 0.04617121 0.01586803 0.0338897 0.009652 ]
[ 0.04782704 -0.04035913 -0.0341589 0.03020919 -0.01157228]
[ 0.00451764 -0.01433611 0.02606953 0.00328832 0.02650392]
[ 0.00451764 -0.01433611 0.02606953 0.00328832 0.02650392]]]
However, I thought the output will be:
[[[ 0.02499047 0.04617121 0.01586803 0.0338897 0.009652 ]
[ 0.04782704 -0.04035913 -0.0341589 0.03020919 -0.01157228]
[ 0 0 0 0 0]
[ 0 0 0 0 0]]]
from How does mask_zero in Keras Embedding layer work?
No comments:
Post a Comment