Monday, 10 September 2018

How to verify optimized model in tensorflow

I'm following a tutorial from codelabs. They use this script to optimize the model

python -m tensorflow.python.tools.optimize_for_inference \
  --input=tf_files/retrained_graph.pb \
  --output=tf_files/optimized_graph.pb \
  --input_names="input" \
  --output_names="final_result"

they verify the optimized_graph.pb using this script

python -m scripts.label_image \
    --graph=tf_files/optimized_graph.pb \
    --image=tf_files/flower_photos/daisy/3475870145_685a19116d.jpg

The problem is I try to use optimize_for_inference to my own code which is not for image classification.

Previously, before optimizing, I use this script to verify my model by test it to a sample data:

import tensorflow as tf
from tensorflow.contrib import predictor
from tensorflow.python.platform import gfile
import numpy as np

def load_graph(frozen_graph_filename):
    with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    with tf.Graph().as_default() as graph:
        tf.import_graph_def(graph_def, name="prefix")

    input_name = graph.get_operations()[0].name+':0'
    output_name = graph.get_operations()[-1].name+':0'

    return graph, input_name, output_name

def predict(model_path, input_data):
    # load tf graph
    tf_model,tf_input,tf_output = load_graph(model_path)

    x = tf_model.get_tensor_by_name(tf_input)
    y = tf_model.get_tensor_by_name(tf_output) 

    model_input = tf.train.Example(
        features=tf.train.Features(feature={
        "thisisinput": tf.train.Feature(float_list=tf.train.FloatList(value=input_data)),
    }))
    model_input = model_input.SerializeToString()

    num_outputs = 3
    predictions = np.zeros(num_outputs)
    with tf.Session(graph=tf_model) as sess:
        y_out = sess.run(y, feed_dict={x: [model_input]})
        predictions = y_out

    return predictions

if __name__=="__main__":
    input_data = [4.7,3.2,1.6,0.2] # my model recieve 4 inputs
    print(np.argmax(predict("not_optimized_model.pb",x)))

but after optimizing the model, my testing script doesn't work. It raises an error:

ValueError: Input 0 of node import/ParseExample/ParseExample was passed float from import/inputtensors:0 incompatible with expected string.

So my question is how to verify my model after optimizing the model? I can't use --image command like the tutorial.

UPDATE

I've solved this error by changing the placeholder type with tf.float32. But unfortunately it raises another error.



from How to verify optimized model in tensorflow

No comments:

Post a Comment