I have been playing around with feedforward neural networks (FNNs) and recurrent neural networks (RNNs) in Keras with structured data of the shape [instances, time, features]
and the performance of FNNs and RNNs have been the same (except that RNNs require more computation time).
I have also simulated data (code below) where I expected a RNN to outperform a FNN because the next value in the series is dependent on the previous value in the series, and both architectures model the data correctly.
With NLP data, I have seen RNNs outperform FNNs, but not with structured data. When would I expect a RNN to outperform a FNN on structured data? Can a simulation with structured data be developed to demonstrate a RNN outperforming a FNN?
Thank you!
from keras import models
from keras import layers
from keras.layers import Dense, LSTM
import numpy as np
import matplotlib.pyplot as plt
Two features were simulated, and the value of the first feature is dependent on the value of both features in the prior time step.
## Simulate data.
np.random.seed(20180825)
X = np.random.randint(50, 70, size = (11000, 1)) / 100
X = np.concatenate((X, X), axis = 1)
for i in range(10):
X_next = np.random.randint(50, 70, size = (11000, 1)) / 100
X = np.concatenate((X, X_next, (0.50 * X[:, -1].reshape(len(X), 1))
+ (0.50 * X[:, -2].reshape(len(X), 1))), axis = 1)
print(X.shape)
## Training and validation data.
split = 10000
Y_train = X[:split, -1:].reshape(split, 1)
Y_valid = X[split:, -1:].reshape(len(X) - split, 1)
X_train = X[:split, :-2]
X_valid = X[split:, :-2]
print(X_train.shape)
print(Y_train.shape)
print(X_valid.shape)
print(Y_valid.shape)
FNN:
## FNN model.
# Define model.
network_fnn = models.Sequential()
network_fnn.add(layers.Dense(64, activation = 'relu', input_shape = (X_train.shape[1],)))
network_fnn.add(Dense(1, activation = None))
# Compile model.
network_fnn.compile(optimizer = 'adam', loss = 'mean_squared_error')
# Fit model.
history_fnn = network_fnn.fit(X_train, Y_train, epochs = 10, batch_size = 32, verbose = False,
validation_data = (X_valid, Y_valid))
plt.scatter(Y_train, network_fnn.predict(X_train), alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.scatter(Y_valid, network_fnn.predict(X_valid), alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
LSTM:
## LSTM model.
X_lstm_train = X_train.reshape(X_train.shape[0], X_train.shape[1] // 2, 2)
X_lstm_valid = X_valid.reshape(X_valid.shape[0], X_valid.shape[1] // 2, 2)
# Define model.
network_lstm = models.Sequential()
network_lstm.add(layers.LSTM(64, activation = 'relu', input_shape = (X_lstm_train.shape[1], 2)))
network_lstm.add(layers.Dense(1, activation = None))
# Compile model.
network_lstm.compile(optimizer = 'adam', loss = 'mean_squared_error')
# Fit model.
history_lstm = network_lstm.fit(X_lstm_train, Y_train, epochs = 10, batch_size = 32, verbose = False,
validation_data = (X_lstm_valid, Y_valid))
plt.scatter(Y_train, network_lstm.predict(X_lstm_train), alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.scatter(Y_valid, network_lstm.predict(X_lstm_valid), alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
from Why Bother With Recurrent Neural Networks For Structured Data?
No comments:
Post a Comment